Type Alias freya::prelude::CursorPoint
source · pub type CursorPoint = Point2D<f64, Measure>;Aliased Type§
struct CursorPoint {
pub x: f64,
pub y: f64,
}Fields§
§x: f64§y: f64Implementations
§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn origin() -> Point2D<T, U>where
T: Zero,
pub fn origin() -> Point2D<T, U>where
T: Zero,
Constructor, setting all components to zero.
pub fn zero() -> Point2D<T, U>where
T: Zero,
pub fn zero() -> Point2D<T, U>where
T: Zero,
The same as [Point2D::origin].
pub const fn new(x: T, y: T) -> Point2D<T, U>
pub const fn new(x: T, y: T) -> Point2D<T, U>
Constructor taking scalar values directly.
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Point2D<T, U>
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Point2D<T, U>
Constructor taking properly Lengths instead of scalar values.
pub fn splat(v: T) -> Point2D<T, U>where
T: Clone,
pub fn splat(v: T) -> Point2D<T, U>where
T: Clone,
Constructor setting all components to the same value.
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Point2D<T, U>
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Point2D<T, U>
Tag a unitless value with units.
pub fn map<V, F>(self, f: F) -> Point2D<V, U>where
F: FnMut(T) -> V,
pub fn map<V, F>(self, f: F) -> Point2D<V, U>where
F: FnMut(T) -> V,
Apply the function f to each component of this point.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Point2D;
let p = Point2D::<u32>::new(5, 15);
assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point2D::new(0, 5));pub fn zip<V, F>(self, rhs: Point2D<T, U>, f: F) -> Vector2D<V, U>where
F: FnMut(T, T) -> V,
pub fn zip<V, F>(self, rhs: Point2D<T, U>, f: F) -> Vector2D<V, U>where
F: FnMut(T, T) -> V,
Apply the function f to each pair of components of this point and rhs.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::{default::{Point2D, Vector2D}, point2};
let a: Point2D<u32> = point2(50, 200);
let b: Point2D<u32> = point2(100, 100);
assert_eq!(a.zip(b, u32::saturating_sub), Vector2D::new(0, 100));§impl<T, U> Point2D<T, U>where
T: PartialOrd,
impl<T, U> Point2D<T, U>where
T: PartialOrd,
§impl<T, U> Point2D<T, U>where
T: Copy,
impl<T, U> Point2D<T, U>where
T: Copy,
pub fn extend(self, z: T) -> Point3D<T, U>
pub fn extend(self, z: T) -> Point3D<T, U>
Create a 3d point from this one, using the specified z value.
pub fn to_vector(self) -> Vector2D<T, U>
pub fn to_vector(self) -> Vector2D<T, U>
Cast this point into a vector.
Equivalent to subtracting the origin from this point.
pub fn yx(self) -> Point2D<T, U>
pub fn yx(self) -> Point2D<T, U>
Swap x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.yx(), point2(-8, 1));pub fn to_untyped(self) -> Point2D<T, UnknownUnit>
pub fn to_untyped(self) -> Point2D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.to_untyped().x);
assert_eq!(point.y, point.to_untyped().y);pub fn cast_unit<V>(self) -> Point2D<T, V>
pub fn cast_unit<V>(self) -> Point2D<T, V>
Cast the unit, preserving the numeric value.
§Example
enum Mm {}
enum Cm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.cast_unit::<Cm>().x);
assert_eq!(point.y, point.cast_unit::<Cm>().y);pub fn to_array(self) -> [T; 2]
pub fn to_array(self) -> [T; 2]
Cast into an array with x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_array(), [1, -8]);pub fn to_tuple(self) -> (T, T)
pub fn to_tuple(self) -> (T, T)
Cast into a tuple with x and y.
§Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_tuple(), (1, -8));pub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
pub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
Convert into a 3d point with z-coordinate equals to zero.
pub fn round(self) -> Point2D<T, U>where
T: Round,
pub fn round(self) -> Point2D<T, U>where
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0))pub fn ceil(self) -> Point2D<T, U>where
T: Ceil,
pub fn ceil(self) -> Point2D<T, U>where
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0))pub fn floor(self) -> Point2D<T, U>where
T: Floor,
pub fn floor(self) -> Point2D<T, U>where
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0))pub fn lerp(self, other: Point2D<T, U>, t: T) -> Point2D<T, U>
pub fn lerp(self, other: Point2D<T, U>, t: T) -> Point2D<T, U>
Linearly interpolate between this point and another point.
§Example
use euclid::point2;
use euclid::default::Point2D;
let from: Point2D<_> = point2(0.0, 10.0);
let to: Point2D<_> = point2(8.0, -4.0);
assert_eq!(from.lerp(to, -1.0), point2(-8.0, 24.0));
assert_eq!(from.lerp(to, 0.0), point2( 0.0, 10.0));
assert_eq!(from.lerp(to, 0.5), point2( 4.0, 3.0));
assert_eq!(from.lerp(to, 1.0), point2( 8.0, -4.0));
assert_eq!(from.lerp(to, 2.0), point2(16.0, -18.0));§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn cast<NewT>(self) -> Point2D<NewT, U>where
NewT: NumCast,
pub fn cast<NewT>(self) -> Point2D<NewT, U>where
NewT: NumCast,
Cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn try_cast<NewT>(self) -> Option<Point2D<NewT, U>>where
NewT: NumCast,
pub fn try_cast<NewT>(self) -> Option<Point2D<NewT, U>>where
NewT: NumCast,
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn to_usize(self) -> Point2D<usize, U>
pub fn to_usize(self) -> Point2D<usize, U>
Cast into an usize point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(self) -> Point2D<u32, U>
pub fn to_u32(self) -> Point2D<u32, U>
Cast into an u32 point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
§impl<T, U> Point2D<T, U>where
T: Euclid,
impl<T, U> Point2D<T, U>where
T: Euclid,
pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
Calculates the least nonnegative remainder of self (mod other).
§Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));
assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));
assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));pub fn div_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
pub fn div_euclid(&self, other: &Size2D<T, U>) -> Point2D<T, U>
Calculates Euclidean division, the matching method for rem_euclid.
§Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));
assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));
assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
pub fn distance_to(self, other: Point2D<T, U>) -> T
Trait Implementations
§impl<T, U> AddAssign<Size2D<T, U>> for Point2D<T, U>where
T: AddAssign,
impl<T, U> AddAssign<Size2D<T, U>> for Point2D<T, U>where
T: AddAssign,
§fn add_assign(&mut self, other: Size2D<T, U>)
fn add_assign(&mut self, other: Size2D<T, U>)
+= operation. Read more§impl<T, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
§fn add_assign(&mut self, other: Vector2D<T, U>)
fn add_assign(&mut self, other: Vector2D<T, U>)
+= operation. Read more§impl<T, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>where
T: ApproxEq<T>,
impl<T, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>where
T: ApproxEq<T>,
§fn approx_epsilon() -> Point2D<T, U>
fn approx_epsilon() -> Point2D<T, U>
§fn approx_eq_eps(&self, other: &Point2D<T, U>, eps: &Point2D<T, U>) -> bool
fn approx_eq_eps(&self, other: &Point2D<T, U>, eps: &Point2D<T, U>) -> bool
true if this object is approximately equal to the other one, using
a provided epsilon value.§fn approx_eq(&self, other: &Self) -> bool
fn approx_eq(&self, other: &Self) -> bool
true if this object is approximately equal to the other one, using
the approx_epsilon epsilon value.§impl<'de, T, U> Deserialize<'de> for Point2D<T, U>where
T: Deserialize<'de>,
impl<'de, T, U> Deserialize<'de> for Point2D<T, U>where
T: Deserialize<'de>,
§fn deserialize<D>(
deserializer: D,
) -> Result<Point2D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Point2D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl<T, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/= operation. Read more§impl<T, U> DivAssign<T> for Point2D<T, U>
impl<T, U> DivAssign<T> for Point2D<T, U>
§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/= operation. Read more§impl<T, U> Floor for Point2D<T, U>where
T: Floor,
impl<T, U> Floor for Point2D<T, U>where
T: Floor,
§impl<T, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*= operation. Read more§impl<T, U> MulAssign<T> for Point2D<T, U>
impl<T, U> MulAssign<T> for Point2D<T, U>
§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*= operation. Read more§impl<T, U> PartialEq for Point2D<T, U>where
T: PartialEq,
impl<T, U> PartialEq for Point2D<T, U>where
T: PartialEq,
§impl<T, U> Round for Point2D<T, U>where
T: Round,
impl<T, U> Round for Point2D<T, U>where
T: Round,
§impl<T, U> Serialize for Point2D<T, U>where
T: Serialize,
impl<T, U> Serialize for Point2D<T, U>where
T: Serialize,
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl<T, U> SubAssign<Size2D<T, U>> for Point2D<T, U>where
T: SubAssign,
impl<T, U> SubAssign<Size2D<T, U>> for Point2D<T, U>where
T: SubAssign,
§fn sub_assign(&mut self, other: Size2D<T, U>)
fn sub_assign(&mut self, other: Size2D<T, U>)
-= operation. Read more§impl<T, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
§fn sub_assign(&mut self, other: Vector2D<T, U>)
fn sub_assign(&mut self, other: Vector2D<T, U>)
-= operation. Read more